A Neutron Diffraction and ¹⁷⁰Yb Mössbauer Investigation of the Perovskite Ytterbium Titanium Oxide

J. E. GREEDAN

Institute for Materials Research and Department of Chemistry, Mc Master University, Hamilton L8S 4M1, Canada

AND LYNNE SODERHOLM AND J. M. FRIEDT

Centre de Recherches Nucleaires, B. P. 20-67037 Strasbourg Cedex, France

Received October 17, 1984; in revised form February 28, 1985

A phase with the perovskite structure (*Pbnm*) and a composition $YbTiO_{2.95}$ has been prepared by a high-temperature carbothermic method. Neutron diffraction shows a colinear ferrimagnetic structure at 7 K with Yb and Ti moments antiparallel along the *c*-axis of the orthorhombic cell and an Yb moment of $1.8(3)\mu_B$. ¹⁷⁰Yb Mössbauer measurements find a more precise and accurate value of $2.0(1)\mu_B$ from the maximum hyperfine field. From the temperature dependence of the hyperfine field a $T_c = 42(1)$ K is found. The Yb sublattice magnetization below T_c follows a Brillouin function. At low temperature a distribution of hyperfine fields is observed which is attributed to a random distribution of defects surrounding the Yb sites. The magnetic structure is discussed in relation to possible values for the crystal field parameters, especially B_0^2 . © 1985 Academic Press. Inc.

Introduction

There has been considerable progress made recently toward the characterization of the magnetic properties of the series $RTiO_3$ ($R = Gd \rightarrow Tm$, Y) (1-6). These compounds crystallize in an orthorhombic distortion of the cubic perovskite structure, and are isostructural with the GdFeO₃ family AMO_3 (A = rare earth; M = Al, Ga, V, Cr. Mn, Co, Fe) (7). The titanates are unique among this family because the Ti(+3) atoms, with 1d electron, order ferromagnetically, producing an appreciable exchange field at R. Expressed as an effective field, the R-Ti interaction produces about 10⁵ Oe at R, compared to 10^3 – 10^4 Oe for R– Fe and R-Cr (4). Furthermore, the R-Ti exchange interaction is largely isotropic

symmetric rather than antisymmetric as in R-Cr and R-Fe (4). Despite these differences, common features have emerged (4) between the magnetic structures of the RMO_3 phases.

The site symmetry at $R(C_s)$ limits the easy direction to be either in the a-b (mirror) plane, or along the *c*-axis. For the known structures of TbMO₃, DyMO₃, and HoMO₃ (M = Al, Fe, Cr, Co, Ti), the *R* moment always lies in the a-b plane, while for ErMO₃ and TmMO₃ it is always parallel to the *c*-axis.

This behavior likely corresponds to the rare-earth single-ion anisotropy dominating the R-M coupling. A simple model was used to calculate the anisotropy for the $R\text{TiO}_3$ series (4). Briefly, this consists of the diagonalization within the basis of the

 R^{3+} free-ion wavefunction of the *R*-site Hamiltonian $\mathcal{H}_R = \mathcal{H}_{CF} + \mathcal{H}_{mol.}$. Here, \mathcal{H}_{CF} is the crystal field at *R* expressed in the Racah formalism as a sum over terms $B_q^k C_q^k$ (8). $\mathcal{H}_{mol.}$ is the effective exchange field at *R* due to the Ti sublattice and is equal to $g_J \mu_B$ $J_z H_{mol.}$ for the field component along *c* or $g_J \mu_B J_x H_{mol.}$ for the field component normal to *c* (*a*-*b* plane).

Values for the B_q^k 's were taken as determined by O'Hare and Donlan for Er^{3+} in YAlO₃ (9). When R = Tb, Dy, or Ho the configuration with the R moment \perp_c is more stable and when R = Er or Tm the Rmoment is found \parallel_c .

These results correlate well with the sign of the matrix element $\langle SLJM_J | B_0^2 C_0^2 |$ $SLJM_J >$. For R = Tb, Dy, or Ho this term is > 0 for R = Er or Tm it is < 0. For R= Yb the matrix element is also < 0 and caxis anisotropy is anticipated, qualitatively.

Quantitatively, the results of similar calculations for YbTiO₃ are far more ambiguous than for the other heavy rare-earth $RTiO_3$ phases. In Table I we give results of four different calculations using various sets of published CF parameters for the Rsite in YAIO₃, denoted as A, B, C, and D. A is the set used previously, C_s symmetry, Er^{3+} : YAIO₃ (9). B is for Tm^{3+} : YAIO₃ (10). Set C, previously unavailable, is for Yb^{3+} : YAIO₃ (11) and D is also for Tm^{3+} : YAIO₃ but in the D_{4h} approximation which features a much larger B_0^2 term than the other models (10).

TABLE I

RESULTS FOR YB³⁺ ANISOTROPY AT THE *R*-SITE FOR DIFFERENT SETS OF CRYSTAL FIELD PARAMETERS

CF model $(B_0^2 \text{ in } \mathbf{K})$	E ₀ (K) XCF ⁺ Xmol c	<i>E</i> 0(K) ℋCF⁺ℋmol⊥c	Predicted moment direction	Calculated Yb moment µB
A (~265.1)	-314.0	-314.8	?	0.60
B (~630.3)	-449.2	-445.3	?	0.76
C (~260.8)	-384.0	-388.8	\perp_c	2.1
D (-1241.4)	-418.6	-404.7	lle	2.1

Models A and B give no clear prediction of the Yb moment direction while models C and D predict opposite results. Both C and D give an Yb³⁺ moment of $2.1\mu_B$.

Experimental results on other Yb MO_3 phases are equally ambiguous regarding predictions for YbTiO₃. The Yb moment in YbFeO₃ (above the reorientation temperature, T_R) is along c with a moment of 0.3 μ_B at 10 K (12) much quenched from the freeion value of 4.0 μ_B . In YbCrO₃ there is no order on the Yb sublattice down to 1.3 K [13]. YbAlO₃ orders magnetically at 0.8 K (14, 15) with an Yb moment at 2.49 μ_B in the a-b plane.

Little is known about the penultimate member of the $RTiO_3$ series, $YbTiO_3$. It has not been synthesized as a pure phase, but powder samples containing about 10% of a paramagnetic impurity have been prepared. Magnetic measurements show that the perovskite phase orders at 39(2) K but no saturation effects are seen at 4.2 K up to 5.0 T(3). As neither the direction nor the magnitude of the Yb moment in YbTiO₃ can be determined from such powder magnetic data, this material has been investigated using the complementary techniques of neutron diffraction and ¹⁷⁰Yb Mössbauer spectroscopy.

Experimental

Sample preparation and characterization. Techniques which can be used for the preparation of other RTiO₃ phases give poor results for YbTiO₃. Both arc melting of Yb₂O₃ and Ti₂O₃ under an argon atmosphere and the firing of mixtures of these same starting materials in welded Mo crucibles yield products consisting of a perovskite and relatively large amounts (>30%) of a second phase which is identified as the pyrochlore Yb₂Ti₂O₇ (16). Better results can be obtained using a carbothermic technique as shown below (17):

$$Yb_2O_3 + 2TiO_2 + C \xrightarrow[100^{-5} \text{ Torr}]{2 \rightarrow 3 \text{ hr}} 2YbTiO_3 + CO$$

This procedure yields a perovskite with cell constants a = 5.256 Å, b = 5.662 Å, and c = 7.540 Å and only 10% of the pyrochlore. The cell volume of the perovskite, 224.4 (Å)³, lies between that of TmTiO₃, 226.8 (Å)³, and LuTiO₃, 220.0 (Å)³.

Thermal gravimetric analysis, performed on the perovskite/10% pyrochlore mixture, reveals a 3.05(5)% weight gain, consistent with that of a pure perovskite YbTiO₃ (2.97%), but larger than that expected (2.64%) for a mixture with a fully oxidized pyrochlore. This result can be explained by assuming the incorporation of oxygen vacancies into the perovskite phase. That is, the mixture corresponds to 0.90 YbTiO_{2.95} + 0.10 YbTiO_{3.50}.

Neutron diffraction. Data were obtained at the McMaster Nuclear Reactor on a triple-axis spectrometer operating in the double-axis mode with a wavelength of 1.40 Å and a position-sensitive detector. This system has been described elsewhere (18). Temperature control was provided by a CTI Inc. Model 21 closed-cycle refrigerator and a Cryogenics Inc. Model DRC 80C controller. Temperatures were measured with a germanium resistance thermometer and control was in all cases better than ± 0.5 K. Samples were contained in a thinwalled aluminum cell filled with helium exchange gas and sealed with an indium gasket.

Mössbauer effect. ¹⁷⁰Yb Mössbauer spectra, involving the 84.4-keV E2 transition between spin states $0^+ \rightarrow 2^+$ were measured in the transmission geometry using a powdered absorber. The source of TmB₁₂, providing an experimental minimum resonance width of 2.7 mm sec⁻¹ was maintained at 4.2 K while the sample temperature was held constant between 4.2 and 50 K.

Results

Neutron Diffraction

The direction of the R^{3+} moment in the RTiO₃ perovskites can be determined directly from the gross features of the magnetic powder pattern. The detailed arguments have been given previously but a brief summary follows (3, 4). The R^{3+} lies on a mirror plane normal to the c-axis. Therefore, one of the principal axes of the anisotropy or g-tensor must lie parallel to the c-axis and the other two in the a-bplane. Of the axes in the plane, symmetry does not require any special relation to the a or b directions and in all known cases these axes lie at some angle to a or b. If the moment lies in the a-b plane the symmetry operations of *Pbnm* require the coexistence of both ferromagnetic, F, and antiferromagnetic components, C. If the moment lies parallel to c either F_z or C_z configurations are allowed but in the RTiO₃ compounds only F_z has been observed.

The chemical or nuclear cell in the $RTiO_3$ phase has the space group Pbnm so reflections of the type (0kl), k = 2n + 1 and (h0l), h + l = 2n + 1 are systematically absent. If the R sublattice has configuration F there are no new magnetic reflections and enhanced intensities are expected for reflections of the type h + k = 2n, l = 2n. There will also be weak enhancements of the h +k = 2n, l = 2n + 1 reflections (A type) because the R^{3+} ions are only slightly displaced from special positions in the chemical cell. If the R sublattice moment has a C component, new reflections of the type h +k = 2n + 1, l = 2n will appear which in some cases violate the Pbnm symmetry rules, for example, (100), (010), (012), and (102).

To summarize, if the R moment lies in the *ab* plane new reflections of the C type appear in the magnetic powder pattern. If the R moment lies along c, only F-type reflections will be seen.

FIG. 1. The neutron diffraction pattern at 7 K of the mixture 90% YbTiO_{2.95}/10% Yb₂Ti₂O₇.

Neutron diffraction powder patterns for YbTiO₃, $T_c = 41$ K, were obtained at 7 and 50 K. The pattern at 7 K is shown in Fig. 1. All lines can be indexed on the *Pbnm* cell except for two lines of 2θ values 14.0 and 26.4 which are assigned to the (111) and (222,311) reflections of the pyrochlore, Yb₂Ti₂O₇. The absence of new Bragg peaks in the 7 K pattern gives immediate indica-

tion that the Yb moment is ferromagnetic along the c direction.

By comparing the integrated intensities of the low-angle reflections significant enhancement is observed for only three groups of intensities (110, 002), (111), and (112, 200, 021). This is shown in Fig. 2 and in Table II.

As the reflections (112) and (200,021) are

FIG. 2. A comparison of diffracted intensities at 7 and 50 K for low-angle reflections of YbTiO_{2.95}.

TABLE II Observed and Calculated Magnetic Intensities for YbTiO₃

hki	I <mark>mag</mark> (I _{7 K} -I _{50 K})	I_{mag}^{calc} (Ti = -0.8 μ_B , Yb = 1.7 μ_B)	I_{mag}^{calc} (Ti = $-0.5\mu_B$, Yb = $1.9\mu_B$)
(110,002)	392 (49)	408	376
(111)	73 (22)	74	85
(112)	82 (23)	30	68
(200,021)	86 (23)	90	124
		$\overline{R} = 0.09$	R = 0.13

clearly resolved the intensities were determined separately by fitting this region of the pattern to two Gaussians with a linear background using a standard nonlinear squares technique.

As there are three parameters (a scale factor and two magnetic moments) and only four observed intensities, a true refinement is not possible. Instead, intensities were calculated for a number of models in which the Yb moment and the Ti moment magnitudes were varied systematically.

Previous refinements of other $R \text{TiO}_3$ structures reveal that the Ti moment varies between 0.5 and 0.8 μ_B (2). Therefore, the Ti moment was fixed along z antiparallel to the Yb moment, and the Yb moment varied for both extreme values of the Ti moment. Those models giving the best agreement with I_{obs} are also shown in Table I. Note that the two values for the Yb moment differ by slightly more than 10% and that their mean value is 1.8 B.M.

Mössbauer Spectroscopy

¹⁷⁰Yb Mössbauer spectra of the mixture are shown for selected temperatures in Fig. 3. The spectra at 43 and 50 K reveal a static paramagnetic spectrum split by the presence of a nonaxial electric field gradient (EFG), with independent components $e^2qQ = 20.9(6)$ mm sec⁻¹ and an asymmetry parameter $\eta = 0.4$.

Below 40 K, down to 4.2 K, a further

splitting is observed, revealing the presence of a magnetic hyperfine field at the Yb site. Electric quadrupole and magnetic dipole interactions of comparable magnitude necessitate the simultaneous diagonalization of the nuclear hyperfine Hamiltonian for noncoaxial magnetic and quadrupolar hyperfine interactions for these low-temperature spectra. An unresolved quadrupole pattern, corresponding to the presence of 10% of the pyrochlore phase (19), is included in all the data analyses.

The temperature dependence of the Mössbauer spectra reveals a magnetic ordering temperature of 42(1) K, in good agreement with the value of 39(1) K established from magnetization measurements. However, the temperature-dependent line broadening observed below 40 K requires an interpretation either in terms of magnetic relaxation, or in terms of a distribution of the hyperfine parameters. Although technically feasible, a model of relaxation between the substates of the ground Kramers doublet, split by the exchange field (20), provides physically unreasonable results. The relaxation rate strongly de-

FIG. 3. YbTiO_{2.95}: 170 Yb Mössbauer spectra at various temperatures.

creases on lowering the temperature, whereas a spin-lattice coupling mechanism, which would operate in the considered temperature range, predicts nearly temperature-independent behavior (21).

The low-temperature (<40 K) data were instead interpreted in terms of a static distribution of the hyperfine field parameters. This situation is assigned to a distribution of superexchange interactions resulting from defects incorporated into the sample. That is, magnetic order on the Yb sublattice is induced by coupling to the Ti sublattice through Yb-O-Ti linkages. The proposed stoichiometry of the perovskite phase is YbTiO2,95 which can also be written as Yb- $Ti_{0.90}^{111}Ti_{0.10}^{11}O_{2.95} \square_{0.05}$ with defects on both the oxygen and titanium sublattices. For this model the total concentration of defects surrounding a single Yb atom is 6%, assuming a random distribution among the nearest neighbor oxygen and titanium atoms (eight of each).

The analysis is performed using a histogram method for the distribution of the hyperfine field. The relative intensities of the three histogram components are obtained assuming a statistical (binomial) distribution of the 6% of defects among the Yb nearest neighbors. The component linewidth is maintained at the experimental value (2.7 mm sec⁻¹); the EFG principal component, the maximum hyperfine field, the difference in hyperfine field between the histogram components (Δ), and the total absorption are adjustable parameters. The results are shown in Table III.

The Yb(+3) moment magnitude scales with the hyperfine field (1050 kOe/ μ_B) (22), hence the moment is directly determined from the maximum hyperfine field component of the spectrum (zero nearest-neighbor vacancies). It is found to be 2.0(1) μ_B at 4.2 K and has a temperature dependence which is well represented by a Brillouin function, as shown in Fig. 4.

The evaluation of the magnetic structure

TABLE III

170Yb Mössbauer	PARAMETERS	AS A	FUNCTION	OF
Темр	ERATURE FOR	YbTi	iO ₃	

Temp. (°K)	e ² qQ (mm/sec)	HM (kOe)	Δ (kOe)
4.2	24 (1)	2120 (100)	400 (50)
20	24 (1)	2020 (100)	300 (50)
30	21 (1)	1800 (100)	700 (50)
35	21 (1)	1650 (100)	600 (50)
40	23 (1)	1290 (100)	700 (50)
50	21 (1)		_

Note. ¹⁷⁰Yb Mössbauer parameters obtained assuming a distribution of hyperfine fields. *HM* is the maximum field with *H* at the other histogram site determined from $H = HM - n\Delta$ where *n* is the number of *nn* vacancies. $\eta = 0.38$ was determined from the 50 K data and fixed for T < 50 K. Errors are in parentheses.

of the perovskite phase from the Mössbauer data can be discussed in terms of the relative orientation between the hyperfine field, H_z (i.e., magnetic moment) and the principal axis of the EFG. Although the RE site symmetry (C_s) dictates that the EFG and magnetic hyperfine field tensors must have one axis along the crystallographic cdirection, there is no a priori requirement that either V_{zz} , the EFG component along the EFG principal axis, or H_z be along c, nor that they be parallel. The angle between V_{zz} and H_z must be determined from the data. Knowing the field gradient parameters from the paramagnetic state, which do not change significantly with decreasing temperature, it is found that the low-temperature spectra are only consistent with a coincident axis system for the two tensors, i.e., V_{zz} and H_z are parallel. As the direction of H_z is known from the neutron diffraction results to be parallel to c, V_{zz} is also parallel to c.

In general the EFG tensor is composed of two parts: EFG = $eQV_{zz}^{\text{latt}}(1 - \gamma_{\infty}) + eQV_{zz}^{\text{latt}}(1 - R)$ where V_{zz}^{latt} and V_{zz}^{val} represent the lattice and unpaired 4f electron contributions and $(1 - \gamma_{\infty})$ and (1 - R) are shielding parameters (24). Lattice sum calculations

FIG. 4. YbTiO_{2.95}: temperature dependence of the average 170 Yb hyperfine field.

place V_{zz}^{latt} normal to c about 30° from the aaxis [23]. That V_{zz} for the total EFG tensor lies parallel to the c-axis indicates the notsurprising dominance of the 4f contribution. In principle it is possible to calculate the 4f contribution from a knowledge of the ground state wavefunction but such detailed information is not available.

Discussion and Conclusions

A perovskite material with a composition near YbTiO_{2.95} has been prepared and characterized. Neutron diffraction reveals a colinear ferrimagnetic structure with a Yb moment of 1.8(3) $\mu_{\rm B}$ parallel to the c-axis. A rather large error is associated with the Yb moment obtained by this method. A more precise and accurate value of 2.0(1) $\mu_{\rm B}$ is determined from the magnetic hyperfine field at ¹⁷⁰Yb using the Mössbauer effect. The preferred c-axis direction for the Yb moment in YbTiO₃ is in accord with qualitative arguments based on the sign of the crystal field (CF) matrix element $\langle SLJM_J | B_0^2 C_0^2 |$ $SLJM_I >$. The contents of Table I show that for Yb, quantitative results are very sensitive to the exact values of the CF parameters. Of the four sets of existing parameters only set D correctly predicts the

moment direction and magnitude. Set D features an unusually large value for the B_0^2 parameter but the D_{4h} symmetry only approximates the true C_s environment.

The Mössbauer spectra showed evidence for a distribution of hyperfine fields at the Yb site. This is understood in terms of the proposed stoichiometry of the perovskite phase, YbTiO_{2.95}, and a random distribution of defects.

Acknowledgments

We thank Mr. J. Couper for assistance with the neutron diffraction experiments and Mr. H. F. Gibbs for the thermal gravimetry analysis. We also thank Dr. P. Imbert for obtaining some of the ¹⁷⁰Yb Mössbauer data, at CEN, Saclay. Financial support from the National Science and Engineering Research Council of Canada is acknowledged. One of the authors (L. S.) wishes to thank NSERC (Canada) and NATO for financial support.

References

- C. W. TURNER AND J. E. GREEDAN, J. Solid State Chem. 34, 207 (1980).
- 2. C. W. TURNER, M. F. COLLINS, AND J. E. GREEDAN, J. Magn. Magn. Mater. 20, 165 (1980).
- C. W. TURNER, M. F. COLLINS, AND J. E. GREEDAN, J. Magn. Magn. Mater. 23, 265 (1981).
- C. W. TURNER, AND J. E. GREEDAN, J. Magn. Magn. Mater. 36, 242 (1983).
- V. G. ZUBKOV, I. F. BERGER, G. V. BAZUEV, AND A. M. ARTAMONOVA, Sov. Phys. Solid State 24, 663 (1982).
- J. E. GREEDAN, C. W. TURNER, AND D. A. GOOD-INGS, J. Magn. Magn. Mater. 42, 255 (1984).
- D. A. MACLEAN, H.-N. NG, AND J. E. GREEDAN, J. Solid State Chem. 30, 35 (1979).
- B. G. WYBOURNE, "Spectroscopic Properties of Rare Earths," Interscience, New York (1965).
- 9. J. M. O'HARE AND V. L. DONLAN, *Phys. Rev. B* 15, 10 (1977).
- J. M. O'HARE AND V. L. DONLAN, Phys. Rev. B 14, 3732 (1976).
- 11. K. K. DEB, J. Phys. Chem. Solids 43, 819 (1982).
- 12. G. R. DAVIDSON, B. D. DUNLAP, M. EIBSCHUTZ, AND L. G. VAN UITERT, Phys. Rev. B 12, 1681 (1975).
- 13. P. BONVILLE, F. GONZALES-JIMENEZ, P. IMBERT,

AND F. VARRET, J. Phys. (Paris) Colloq. 35, 575 (1974).

- 14. P. BONVILLE, J. A. HODGES, P. IMBERT, AND F. HARTMANN-BOUTRON, *Phys. Rev. B* 18, 2196 (1978).
- P. RADHAKRISHNA, J. HAMMANN, M. OCIO, P. PARI, AND Y. ALLAIN, Solid State Commun. 37, 813 (1981).
- 16. G. JEHANNO (CEN SACLAY), private communication.
- 17. G. V. BAZUEV AND G. P. SHVEIKEN, Russ. J. Inorg. Chem. 22, 675 (1977).
- 18. I. J. DAVIDSON AND J. E. GREEDAN, J. Solid State Chem. 51, 104 (1984).
- 19. B. D. DUNLAP, G. K. SHENOY, J. M. FRIEDT, M.

MEYER, AND G. J. MC CARTHY, *Phys. Rev. B* 18, 1936 (1978).

- 20. I. NOWIK AND H. H. WICKMAN, *Phys. Rev. Lett.* 17, 949 (1966).
- 21. P. BONVILLE, Rev. Phys. Appl. 18, 365 (1983); P. IMBERT, Rev. Phys. Appl. 18, 457 (1983).
- 22. C. MEYER, Y. GROS, F. HARTMANN-BOUTRON, AND J. J. CAPPONI, J. Phys. (Paris) 40, 403 (1979).
- 23. L. SODERHOLM AND C. V. STAGER, unpublished.
- 24. S. OFER, I. NOWIK, AND S. G. COHEN, in "Chemical Applications of Mössbauer Spectroscopy" (V. T. Goldanskii and R. H. Herber, Eds.), pp. 428–503, Academic Press, New York (1968).